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Fifty-seven students in mathematical content and secondary mathematics methods courses from four 
U.S. universities participated in an instructional sequence to generate communal criteria defining 
mathematical proof within their respective classrooms. Participants completed a proof-related task 
before class, worked together in small groups to evaluate instructor-selected arguments, communally 
agreed upon criteria for evaluating a proof based on their evaluations, and then revised their 
original argument to meet the communal criteria after class. Similar criteria were constructed across 
the four classrooms. Moreover, the four authors coded and compared students’ initial and revised 
arguments with respect to proof schemes to identify specific shifts in students’ work after the 
instructional sequence. Results indicated a majority of students’ proof schemes changed in their 
revised argument with specific trends aligning with their class-based criteria for proof. 
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Current reforms have called for a stronger emphasis on mathematical reasoning and proving in 
school mathematics (National Governors Association Center for Best Practices & Council of Chief 
State School Officers [NGA & CCSSO], 2010; National Council of Teachers of Mathematics 
[NCTM], 2000). The challenge of meeting this recommendation is that students typically observe 
their teacher presenting a polished and completed proof (Stylianou, Blanton, & Knuth, 2009). Using 
this method of proof instruction suggests to students that their teacher is the primary authority to 
judge the validity of their proof (Harel & Sowder, 1998). Students then believe that the goal of 
learning proofs involves strategies that replicate similar problems (Bleiler, Ko, Yee, & Boyle, 2015). 
Such instructional methods complicate students’ ability to judge the validity of mathematical 
arguments because students are not given the opportunity to “construct viable arguments and critique 
the reasoning of others” (NGA & CCSSO, 2010, p. 6), a necessary standard for mathematical 
practice. Therefore, it is not surprising that research has shown that students at all grade levels have 
considerable difficulty in judging the validity of a proof (Healy & Hoyles, 2000; Ko & Knuth, 2013; 
Segal, 1999; Weber, 2010).  

Although students’ difficulties with proof are well documented, to date, little research has 
explicitly articulated a classroom community’s criteria for mathematical proof, including social 
dimensions necessary for proof validation. Bleiler, Thompson, and Krajčevski (2014) explain that 
“many researchers have called for the explicit instruction to proof validation to ameliorate common 
difficulties related to accepting inductive arguments or focusing on local rather than global elements 
of an argument” (p. 109). Concomitantly, Hanna and Jahnke (1993) remind us that “the social 
process of verification through which proof becomes accepted in the mathematical community 
should somehow be imitated in the school” (p. 433). To address this research gap, we designed an 
intervention where students: (1) constructed an initial argument justifying their generalization to the 
Sticky Gum Problem (SGP) depicted in Figure 1 before class; (2) critiqued instructor-selected 
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arguments in small groups and developed a list of five communal criteria necessary for writing 
proofs during class; and (3) revised their initial argument to the SGP to meet the classroom-based 
criteria for proof after class described in Table 1. In this paper, we investigated how students’ written 
arguments differed before and after our instructional sequence. To answer this research question, we 
used Harel and Sowder’s (2007) proof schemes to identify how the students’ arguments shifted given 
their engagement in the instructional sequence. 

 
Figure 1. The Sticky Gum Problem originally created by Fendel, Resek, Alper, and Fraser (1996). 

Table 1: Instructional Sequence to Create Communal Criteria to Understand Proof 
Before-
Class 
Activity  

• Each student solves the Sticky Gum Problem (SGP) and submits the SGP electronically 
prior to the before-class activity. 

• The instructor chooses five distinct arguments submitted by their students. 
During-
Class 
Activity 

 

• Students break into small groups of 2-4 students. Each group (1) looks at the same five 
instructor-selected classmate’s arguments; (2) discusses and decides which of the five 
selected arguments are mathematical proofs; (3) determines how they decided whether each 
argument is a mathematical proof; and (4) creates a list of five proof criteria through small 
and whole group discussions. 

• All small groups rejoin the entire class. The entire class has discussions, compares the small 
group’s criteria, and determines a class-wide communal list of five criteria for proof. 

After-Class 
Activity 

• Each student revises their original argument for SGP to satisfy the communal class-based 
criteria and submits their revised argument. 

Theoretical Framework 
To investigate how developing communal criteria for proof affected students’ written arguments, 

this study builds on the frameworks about proof in the mathematics classroom (Stylianides, 2007), 
the process of proving (i.e. ascertaining and persuading, Harel & Sowder, 1998, 2007), and proof 
schemes (Harel & Sowder, 1998, 2007). 

Proof in the Mathematics Classroom 
 A traditional perspective of proof is “a formal and logical line of reasoning that begins with a set 

of axioms and moves through logical steps to a conclusion” (Griffiths, 2000, p. 2). This definition 
describes a formal individual process of writing a proof, but does not acknowledge the negotiation 
aspects of constructing and validating proofs within a mathematics community. Stylianides (2007) 
suggested that proof is a connected sequence of assertions because it 

(1) uses statements accepted by the classroom community (set of accepted statements) that are 
true and available without further justification; (2) employs forms of reasoning (modes of 
argumentation) that are valid and known to, or within the conceptual reach of, the classroom 
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community; and (3) is communicated with forms of expression (modes of argument 
representation) that are appropriate and known to, or within the conceptual reach of, the 
classroom community. (p. 291) 

Stylianides created this definition emphasizing proof that balances mathematics as a discipline and a 
learning tool. We use Stylianides’ definition of proof as a frame of reference to interpret students’ 
characteristics of proof and their classroom-based criteria for proof.  

Ascertaining and Persuading 
To understand how a mathematics community can support students’ understanding of what 

counts as proof, it is also necessary to consider individuals’ ideas of what constitutes a proof during 
the proving process. To incorporate both the individual and the communal aspects of proving, we use 
Harel and Sowder’s (2007) action of proving as “the process employed by an individual (or a 
community) to remove doubts about the truth of an assertion” (p. 808). Furthermore, Harel and 
Sowder (1998, 2007) indicated proving as ascertaining (convincing oneself) and persuading 
(convincing one’s community). Weber’s (2010) research found that undergraduate mathematics 
majors would judge a deductive argument as proof, even if they were not convinced by its argument 
or the argument was logically flawed. Both Weber (2010) and Segal (1999) emphasize the need to 
push individual’s convictions into public discussion, which was an aim of our instructional sequence. 
When students have to judge the validity of an argument, they are forced to negotiate between 
ascertaining and persuading because the judgement is based on how the argument would convince 
themselves and others. To this end, we designed our instructional sequence around students judging 
the validity of instructor-selected arguments, which allowed them to use their understanding of what 
counts as proof to create a discursive space and reach consensus on their judgements. 

Proof Schemes 
As the purpose of this study is to examine the effect that our instructional sequence would have 

on students’ arguments, we use Harel and Sowder’s (2007) proof schemes to analyze students’ work 
because a proof scheme consists of “what constitutes ascertaining and persuading for that person (or 
community)” (p. 809). Harel and Sowder divided proof schemes into three main categories, which 
are external conviction proof schemes, empirical proof schemes, and deductive proof schemes. 
External conviction proof schemes mean that conviction is made by the form of an argument, such as 
a teacher, a textbook, or symbolic representations. In the classroom external convictions often take 
the form of an authoritarian proof scheme (Harel & Sowder, 2007). For empirical proof schemes, the 
validity of a conjecture is made by specific cases or individuals’ mental images. Regarding deductive 
proof schemes, a conjecture’s veracity is determined by logical deduction. Harel and Sowder (1998) 
make a strong point “that these schemes are not mutually exclusive; people can simultaneously hold 
more than one kind of scheme” (p. 244). For that reason, it is important for us to look for overlaps 
within the three proof schemes when analyzing our data.  

Harel and Sowder’s (1998) original proof-scheme taxonomy aligns with the focus of this study: 

Our definitions of the process and proving and proof scheme are deliberatively psychological and 
student-centered... Thus, this classification is not of proof content or proof method…In contrast, 
it is the individual’s scheme of doubts, truths, and convictions, in a given social context, that 
underlies our characterization of proof schemes. (p. 244) 

In the same ilk, the focus of this research emphasizes the “social context” of the classroom. Hence, 
we use proof scheme categorizations as comparative tools to look for changes in students’ initial and 
revised arguments. We are not trying to evaluate the correctness of students’ arguments but rather 
assign a qualitative descriptor of students’ justification. This allows us to gain evidence of students’ 
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relative convictions (Weber & Mejia-Ramos, 2015) of what constitutes mathematical proof before 
and after the instructional sequence.  

Method 

Participants 
This study was conducted across four separate courses across four institutions where the authors 

were the instructors. Two of the courses (Authors 1 and 4) were mathematical content courses, and 
the other two (Authors 2 and 3) were secondary mathematics methods courses. Concomitantly, three 
authors were within mathematics departments, and one author was in an education department. There 
were a total of 57 undergraduate and graduate mathematics or secondary mathematics education 
majors participating in the study. All of the participants either had completed calculus courses and an 
introductory proof course or were presently in an introductory proof course. 

Design and Implementation of the Instructional Sequence 
The instructional design was organized around the SGP (see Figure 1) into a before-class activity, 

during-class activity, after-class activity (see Table 1). The participants submitted their solutions to 
the SGP prior to the during-class activity. The four instructors reviewed the arguments submitted by 
the students and selected five arguments from each class to have the students evaluate with the 
during-class activity. Arguments were chosen for their diversity in mode of argumentation, mode of 
argument representation, and sets of accepted statements (Stylianides, 2007). Simultaneously, the 
four authors selected arguments that would illustrate differing modes of argumentation to promote 
discourse around what counts as proof. 

Students individually evaluated the five selected arguments in class and then worked in small 
groups to negotiate and come to a consensus on which arguments they believed to be valid proofs. 
This negotiation provoked important conversation about what defines a proof because negotiations 
highlighted if the argument persuaded the students, aligned with how the students had ascertained 
justification, or both. The students were then instructed to articulate three to seven criteria for 
determining arguments to be proofs. After each small group created their list, the whole class 
discussed and agreed upon five appropriate criteria for proof in their classroom. Each of the four 
classes had some differing criteria, but their criteria all showed that a proof needs to be generalizable 
and have logical structure (see Boyle, Bleiler, Yee, & Ko, 2015 for a more detailed discussion of the 
communal criteria). An important note is that these two categories, generalizability and logical 
structure, are similar to what Harel and Sowder (2007) labeled as necessary characteristics of the 
transformational deductive proof scheme, generality and logical inference. 

Data Collection and Analysis  
All four authors collected their students’ work and class artifacts throughout the instructional 

sequence. Each student’s initial argument and revised argument were coded according to Harel and 
Sowder’s (1998, 2007) proof schemes to identify their changes. As discussed in the theoretical 
framework section, Harel and Sowder suggested that overlaps of the categories of external 
conviction, empirical, and deductive proof schemes were to be expected. Thus, three more 
categories, “empirical/external conviction, external conviction/deductive, and empirical/deductive,” 
were developed and included in our data analysis. We provide Gabriel’s work depicted in Figure 2 as 
an example of the need for the overlap in coding. 

Figure 2 is Gabriel’s initial argument coded as Empirical/Deductive. It could be easy to classify 
Gabriel’s argument with an empirical proof scheme because of the justification using one example 
with three children and three colors. However, there are elements of the deductive proof scheme 
within his work as well. Gabriel generalized the argument with statements, such as “worst case 



Mathematical Processes 656 

 

Wood, M. B., Turner, E. E., Civil, M., & Eli, J. A. (Eds.). (2016). Proceedings of the 38th annual meeting of the 
North American Chapter of the International Group for the Psychology of Mathematics Education. Tucson, AZ: 
The University of Arizona. 

scenario” and the concluding remark, “if all but one child have all the colors of gum, any color will 
ensure they all have the same.” These statements reference the restrictive characteristics of the 
transformational proof scheme (Harel & Sowder, 1998), a subset of the deductive proof scheme. 
Gabriel presumed to understand the restrictions that transform the situation by assuming the worst 
case scenario and discussing what transformation would be necessary to satisfy the last child 
receiving the same color. Thus, Gabriel’s argument was coded as Empirical/Deductive. It is 
important that the proof schemes are not evaluating the correctness of students’ arguments but rather 
than describing what characteristics students communicate with their justifications. 

 
Figure 2. Gabriel’s original argument classified via empirical and deductive proof schemes. 

All four authors met and agreed upon the structure and purpose of the six categorizations, and 
evaluated 15 randomly-selected arguments to make sure that there was strong interrater reliability. 
Authors then all double-coded the remaining arguments. There were a total of 54 original and 46 
revised arguments, and each of them was coded by at least two authors. Any varying proof schemes 
were discussed amongst the authors who coded the proof scheme to find consensus. Once all 
arguments had been coded and consensus had been reached amongst the codes, the authors compared 
original and revised proof schemes amongst all students. 

Results 
Table 2 illustrates the coding of each student’s before-class argument (rows) and after-class 

argument (columns). Colors have been added to illustrate blends. For example, empirical is red and 
external conviction is yellow, so empirical/external conviction is orange. Each cell in Table 2 
illustrates the number of students that transitioned from one proof scheme to another. A row or 
column identified as “None” means that the students offered no argument. 
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Table 2: Proof Schemes of all original and revised arguments  

 
 
The main diagonal of Table 2 shows that five empirical proof schemes remained empirical (row2, 
column2), three external proof schemes remained external convictions (row4, column4), four 
deductive proof schemes remained deductive (row6, column6), and one empirical/deductive 
remained empirical/deductive. Altogether, 13 of the 57 participants kept with the same proof scheme 
after the instructional sequence, demonstrating that the majority of students constructed arguments 
that provided evidence of altered proof schemes after the instructional sequence. Looking along the 
diagonal also reveals that no arguments that was coded initially with an overlapping code (e.g. 
external/deductive), kept the same proof scheme after being revised except for one student whose 
original argument and revised argument were coded as empirical/deductive.  

Table 2 also shows that the number of strictly empirical proof schemes declined from 27 to 8 
while the number of strictly deductive proof schemes grew from 6 to 20 after our instructional 
sequence. For instance, Kimmie’s original and revised argument depicted in Figure 3 is an example 
of this transition. Kimmie’s original argument bases its justification around the given information 
and justifies the general rule using examples. For her revised argument, Kimmie uses generality and 
logical inference, which are two aspects of Harel and Sowder’s (2007) deductive proof schemes. 
Kimmie’s work illustrates how her argument shifted from an empirical proof scheme to a deductive 
proof scheme after participating in the instructional sequence.  

Finally, the external conviction proof schemes increased slightly from 8 to 10 after the 
instructional sequence. When looking closely at arguments demonstrating external conviction, the 
students seemed to tend to replicate a method that had been used in one of the five instructor-selected 
arguments (e.g., mathematical induction on both the number of children and the colors of bubble 
gum) to construct their revised arguments. More specifically, those students might mimic one of the 
instructor-selected arguments without being able to fully justify why their generalization to the SGP 
is always true.  
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Figure 3: Kimmie’s initial (hand written) and revised (typed) arguments coded as empirical and 
deductive, respectively. 

Discussion 
This study challenges the current borders surrounding students’ classroom engagement with 

constructing and critiquing arguments. Our instructional sequence gives students opportunities to 
develop criteria for proof through evaluating, discussing, and negotiating what counts as proof. In 
addition, these results illustrate that the instructional sequence allowed students to judge the validity 
of arguments, empowering students to generate criteria from those judgements to influence what 
constitutes as ascertaining and persuading (i.e., Harel & Sowder’s proof scheme, 2007) in their 
classroom community. Thus, this instructional sequence can aid teachers in developing what 
constitutes a proof through evaluating arguments, as well as discussing and negotiating their 
classroom-based criteria for proof.   

By using Harel and Sowder’s (1998) lens of proof schemes, our results show that a majority of 
students changed their argument after the instructional sequence. Of those changed, the number of 
empirical proof schemes decreased while the number of deductive proof schemes increased. Also, the 
number of external conviction proof schemes remained about the same. The decrease in empirical 
proof schemes and increase in deductive proof schemes might appear to align with the communal 
criteria for proof students developed, because the two of the criteria shared by all four classes—
logical structure and generalizability—are the characteristics of Harel and Sowder’s (2007) 
transformational deductive proof schemes, logical inference and generality.  

When evaluating the validity of arguments, Weber and Mejia-Ramos (2015) indicate that 
students’ convictions are often not absolute but relative, meaning that writing an argument is more 
than justifying one’s beliefs. The research described in this paper did not measure the mathematical 
validity of students’ initial and revised arguments. However, we identified characteristics of student 
justifications with respect to Harel and Sowder’s (2007) proof schemes, because our study desired to 
determine how engaging in our instructional sequence would affect students’ revised arguments. 
When implementing our instructional sequence, one should not see the communal criteria as an 
absolute final product, but they serve as a means to improve students’ understanding of proof and 
their abilities to write proofs. Thus, we see the generation of classroom-based criteria is not limited to 
assessment of learning or assessment for learning, but it also serves an assessment as learning 
(Bleiler, Ko, Yee, & Boyle, 2015). A valuable future research study could include multiple iterations 

Conjecture: The maximum amount of 
pennies required to allow the number of 
children the same color gumball can be 
represented in the form p=c(n-1)+1 where p 
is the number of pennies, c is the amount of 
colors in the machine, and n is the number of 
children receiving gumballs.  In order to 
satisfy the children the least amount of 
pennies is 1 too few of one of the colors, 
which is represented as (n-1).  To show this 
for every color in the machine, multiply the 
minimum for one color by the total number 
of colors in the machine, c(n-1).  When one 
more gumball is drawn, no matter what the 
next color is, it will satisfy the needs of the 
children, so add one penny to the amount.  
Therefore, c(n-1) +1, represents the 
maximum amount of pennies needed for each 
children to have the same color of gumball 
no matter how many children or different 
colors are in the machine.   
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of this instructional sequence with various the proof-related problems to lead to a better 
understanding of what students have learned about proof and proving over a full semester and across 
different mathematical content areas. 

In sum, this study offers an alternative method of proof instruction to help students take 
ownership of their proof construction instead of viewing their teacher as the primary authority in the 
classroom. Moreover, our results show a means in which to have students develop a common 
understanding of what counts as proof through critiquing the reasoning of others. Thus, this 
instructional sequence offers a social space in which teachers and students can discuss and negotiate 
the meaning of what constitutes a proof. 
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